Precalculus

11-04 Lines and Planes in Space

Lines

General form

$$
\left\langle x-x_{1}, y-y_{1}, z-z_{1}\right\rangle=\langle a t, b t, c t\rangle
$$

Parametric Equations of Line

$$
\begin{aligned}
x & =a t+x_{1} \\
y & =b t+y_{1} \\
z & =c t+z_{1}
\end{aligned}
$$

Symmetric Equation of Line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Find a set of parametric equations of the line that passes through $(1,3,-2)$ and $(4,0,1)$.

Planes

Standard form

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

General form

$$
a x+b y+c z+d=0
$$

Find the general equation of plane passing through $A(3,2,2), B(1,5,0)$, and $C(1,-3,1)$

Angle between two planes

- Find the angle between \qquad vectors
- Normal vectors are \qquad in the equations of the plane

$$
\left|\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right|=\left\|\overrightarrow{n_{1}}\right\|\left\|\overrightarrow{n_{2}}\right\| \cos \theta
$$

Distance between a Point and a Plane

$$
\begin{gathered}
D=\left\|\operatorname{proj}_{\vec{n}} \stackrel{\rightharpoonup}{P Q}\right\| \\
D=\frac{|\overrightarrow{P Q} \cdot \vec{n}|}{\|\vec{n}\|}
\end{gathered}
$$

\qquad

Sketch $3 x+4 y+6 z=24$

